Concepts students should know before entering $6^{\text {th }}$ Grade Enriched/Accelerated:
Students should be advanced at these concepts:
Long Division
Directions: Complete the following problems. NO CALCULATOR! SHOW ALL WORK!!

1. $\begin{gathered} \frac{619}{5 \sqrt[3]{3,095}} \\ \frac{-30}{099} \\ -\frac{5}{45} \\ \frac{-45}{0} \end{gathered}$	2.	3.
4.	5. $\begin{array}{r} 0775 \\ 7 \longdiv { 5 , 4 2 5 } \\ -49 \downarrow \\ 52 \\ -49 \downarrow \\ 35 \\ -35 \\ 0 \end{array}$	6. $\begin{array}{r} 0928 \\ \hline 8,424 \\ -72 \downarrow \\ 22 \\ -16 \downarrow \\ 64 \\ -64 \\ \hline 0 \end{array}$
	8.0208 $1 1 \longdiv { 2 , 2 8 8 }$ $-22 \downarrow$ 08 $-\quad 0$ 88 -88 0	9.
10. $\begin{array}{r} 0707 \\ \hline 8 \longdiv { 5 , 6 5 6 } \\ -56 \downarrow \\ 05 \\ -\quad 0 \downarrow \\ 56 \\ -56 \\ \hline 0 \end{array}$	11	12.

1. Oliver played 2 rounds of a trivia game and scored 982 points. If he gained the same number of points each round, how many points did he score per round?
```
2 rounds }->982\mathrm{ points
1 round }->982\div2=49
```

491 points per round
2. Roger has 365 baseball cards in 5 binders. If each binder has the same number of cards, how many cards are in each binder?

5 binders $\rightarrow 365$ cards
1 binder $\rightarrow 365 \div 5=73$
73 cards per binder
4. An ice machine had 480 ice cubes in it. If you were filling up 8 ice chests and each chest got the same number of cubes, how many ice cubes would each chest get?

$$
480 \div 8=60
$$

60 ice cubes per ice chest
5. Faye is making bead necklaces. She has 606 beads and is making 2 necklaces with each necklace using the same number of beads. How many beads will each necklace use?

$$
606 \div 2=303
$$

303 beads per necklace
6. There are 545 students in a school. If the school has 5 grades and each grade had the same number of students, how many students were in each grade?

```
5 grades }->545\mathrm{ students
1 grade }->545\div5=10
1 0 9 \text { students per grades}
```

Mixed Numbers \& Improper Fractions
Directions: Convert the following improper fractions to mixed numbers. Write your answer on the line next to each problem.

1) $\frac{9}{4}=2 \frac{1}{4}$	6) $\frac{\mathbf{1 1}}{\mathbf{5}}=2 \frac{1}{5}$	11) $\frac{\mathbf{7 1}}{\mathbf{1 0}}=$
2) $\frac{\mathbf{8 2}}{\mathbf{9}}=9 \frac{1}{9}$	7) $\frac{\mathbf{6 1}}{\mathbf{6}}=\underline{10 \frac{1}{6}}$	12) $\frac{\mathbf{2 9}}{\mathbf{7}}=4 \frac{1}{7}$
3) $\frac{\mathbf{3 1}}{\mathbf{5}}=6 \frac{1}{5}$	8) $\frac{7}{3}=2 \frac{1}{3}$	13) $\frac{\mathbf{5 5}}{\mathbf{6}}=9 \frac{1}{6}$
4) $\frac{\mathbf{1 3}}{\mathbf{3}}=4 \frac{1}{3}$	9) $\frac{\mathbf{5 0}}{\mathbf{7}}=\underline{7 \frac{1}{7}}$	14) $\frac{\mathbf{2 1}}{\mathbf{1 0}}=2$
5) $\frac{\mathbf{2 9}}{\mathbf{7}}=4 \frac{1}{7}$	10) $\frac{\mathbf{1 7}}{\mathbf{4}}=4 \frac{1}{4}$	15) $\frac{\mathbf{2 5}}{\mathbf{4}}=\underline{6 \frac{1}{4}}$

Directions: Convert the following improper fractions to mixed numbers. Write your answer on the line next to each problem.

1) $5 \frac{1}{3}=\frac{16}{3}$	6) $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}={ }_{-}^{\frac{5}{2}}$	11) $\mathbf{9} \frac{\mathbf{1}}{\mathbf{5}}={ }_{-} \frac{46}{5}$
2) $2 \frac{\mathbf{1}}{8}=\frac{17}{8}$	7) $\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}}={ }_{-}^{\frac{13}{4}}$	12) $6 \frac{1}{2}={ }_{-}^{2}$
3) $\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}}=\frac{13}{4}_{\text {_ }}$	8) $6 \frac{1}{10}=\frac{61}{10}_{\text {_ }}$	13) $5 \frac{4}{9}=-\frac{49}{9}$
4) $\mathbf{3} \frac{\mathbf{2}}{\mathbf{9}}=\frac{29}{9}_{-}$	9) $5 \frac{\mathbf{7}}{\mathbf{1 0}}={ }_{-} \frac{57}{10}$	14) $9 \frac{2}{3}=-\frac{29}{3}$
5) $\mathbf{9} \frac{\mathbf{3}}{\mathbf{8}}={ }_{-} \frac{75}{8}-$	10) $9 \frac{1}{2}=-\frac{19}{2}$ -	15) $\mathbf{2} \frac{\mathbf{3}}{8}=-\frac{19}{8}$

Simplifying Fractions
Directions: Simplify the following fractions.

$\frac{4}{6}=\frac{2}{3}$	$\frac{2}{10}=\frac{1}{5}$	$\frac{21}{28}=\frac{3}{4}$	$\frac{10}{15}=\frac{2}{3}$	$\frac{6}{18}=\frac{1}{3}$
$\frac{4}{8}=\frac{1}{2}$	$\frac{16}{20}=\frac{4}{5}$	$\frac{7}{14}=\frac{1}{2}$	$\frac{6}{15}=\frac{2}{5}$	$\frac{12}{20}=\frac{3}{4}$

Adding Fractions

Directions: Solve the following problems. NO CALCULATOR! Put your answers in simplified form.

$\begin{aligned} & \text { 1. } \frac{4}{7}+\frac{10}{21}= \\ & \frac{12}{21}+\frac{10}{21}=\frac{22}{21}=1 \frac{1}{21} \end{aligned}$	$\begin{aligned} & 2 \cdot \frac{8}{9}+\frac{1}{3}= \\ & \begin{aligned} \frac{24}{27}+\frac{9}{27}= & \frac{33}{27}=1 \frac{6}{27} \\ & =1 \frac{2}{9} \end{aligned} \end{aligned}$	$\begin{aligned} & 3 \cdot \frac{11}{6}+\frac{4}{9}= \\ & \frac{33}{18}+\frac{8}{18}=\frac{41}{18}=2 \frac{5}{18} \end{aligned}$
$\begin{aligned} 4 \cdot \frac{6}{12}+\frac{12}{4} & = \\ \frac{6}{12}+3 & =3 \frac{6}{12}=3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 5 \cdot \frac{4}{5}-\frac{7}{10}= \\ & \frac{8}{10}-\frac{7}{10}=\frac{1}{10} \end{aligned}$	$\begin{aligned} & \text { 6. } \frac{8}{11}+\frac{12}{5}= \\ & \frac{40}{55}+\frac{132}{55}=\frac{172}{55}=3 \frac{7}{55} \end{aligned}$
$\begin{aligned} 7 \cdot \frac{10}{3}-\frac{2}{12} & = \\ \frac{20}{6}-\frac{1}{6} & =\frac{19}{6}=3 \frac{1}{6} \end{aligned}$	$\begin{aligned} & 8 \cdot \frac{11}{6}+\frac{1}{10}= \\ & \begin{aligned} \frac{55}{30}+\frac{3}{30} & =\frac{58}{30}=1 \frac{28}{30} \\ & =1 \frac{14}{15} \end{aligned} \end{aligned}$	9. $\frac{3}{5}-\frac{6}{11}=$ $\frac{33}{55}-\frac{30}{55}=\frac{3}{55}$

Directions: Solve the following. NO CALCULATORS!! Show all work and simplify your answer!

	1. $\begin{aligned} & 3 \frac{1}{4}+4 \frac{1}{2}= \\ & 3 \frac{1}{4}+4 \frac{2}{4}=7 \frac{3}{4} \end{aligned}$
$\begin{aligned} & \text { 2. } 2 \frac{5}{6}+5 \frac{4}{7}= \\ & 2 \frac{35}{42}+5 \frac{24}{42}=7 \frac{59}{42}=8 \frac{17}{42} \end{aligned}$	$\begin{aligned} & 2 \frac{3}{5}+6 \frac{1}{4}= \\ & 2 \frac{12}{20}+6 \frac{5}{20}=8 \frac{17}{20} \end{aligned}$
4. $\begin{aligned} & 4 \frac{2}{3}+4 \frac{1}{6}= \\ & 4 \frac{4}{6}+4 \frac{1}{6}=8 \frac{5}{6} \end{aligned}$	$\begin{aligned} & \text { 5. } 3 \frac{1}{2}+3 \frac{1}{5}= \\ & 3 \frac{5}{10}+3 \frac{2}{10}=6 \frac{7}{10} \end{aligned}$
6. $23 \frac{1}{2}-18 \frac{1}{6}=$ $23 \frac{3}{6}-18 \frac{1}{6}=5 \frac{2}{6}=5 \frac{1}{3}$	7. $19 \frac{1}{2}-4 \frac{4}{5}=$ $\begin{gathered} 19 \frac{5}{10}-4 \frac{8}{10}=18 \frac{15}{10}-4 \frac{8}{10} \\ =14 \frac{7}{10} \end{gathered}$

Multiplying Fractions

Directions: Solve the following. NO CALCULATORS!! Simplify your answer.

Example: $\frac{2}{3} \times 5=$?

$\begin{gathered}\text { make the whole } \\ \text { number a } \\ \text { fraction }\end{gathered}$$\frac{\mathbf{5}}{\mathbf{1}} \begin{gathered}\text { multiply the } \\ \text { top numbers } \\ \text { (numerators) }\end{gathered} ~ \mathbf{2 \times 5 = 1 0} \begin{gathered}\begin{array}{c}\text { multiply the } \\ \text { bottom numbers } \\ \text { (denominators) }\end{array} \\ \text { (den }\end{gathered}$

1. $\begin{aligned} & 3 \times \frac{2}{9}= \\ & \quad \frac{13}{1} \times \frac{2}{93}=\frac{2}{3} \end{aligned}$	2. $\begin{aligned} & 4 \times \frac{3}{15}= \\ & \frac{4}{1} \times \frac{31}{155}=\frac{4}{5} \end{aligned}$	$\begin{aligned} & 3 . \quad 2 \times \frac{9}{19}= \\ & \frac{2}{1} \times \frac{9}{19}=\frac{18}{19} \end{aligned}$
4. $\begin{aligned} & 6 \times \frac{3}{24}= \\ & \frac{16}{1} \times \frac{3}{244}=\frac{3}{4} \end{aligned}$	5. $\begin{aligned} & 2 \times \frac{2}{5}= \\ & \frac{2}{1} \times \frac{2}{5}=\frac{4}{5} \end{aligned}$	6. $\begin{aligned} & 1 \times \frac{5}{5}= \\ & \quad \frac{1}{1} \times \frac{51}{51}=\frac{1}{1}=1 \end{aligned}$
7. $5 \times \frac{1}{7}=$ $\frac{5}{1} \times \frac{1}{7}=\frac{5}{7}$	8. $\begin{aligned} & 10 \times \frac{1}{16}= \\ & \frac{510}{1} \times \frac{1}{168}=\frac{5}{8} \end{aligned}$	$\begin{aligned} & \text { 9. } \quad 3 \times \frac{4}{9}= \\ & \frac{13}{1} \times \frac{4}{93}=\frac{4}{3}=1 \frac{1}{3} \end{aligned}$
Example: $\frac{4}{5} \times \frac{2}{8}=$? $\begin{gathered} \text { multiply } \\ \text { numertars } \\ \text { multiply } \\ \text { denominators } \end{gathered} \frac{4 \times 2}{5 \times 8}=\frac{8}{40}=\frac{1}{5}$	10. $\begin{aligned} & \frac{3}{6} \times \frac{3}{2}= \\ & \frac{13}{26} \times \frac{3}{2}=\frac{3}{4} \end{aligned}$	11. $\begin{aligned} & \frac{20}{40} \times \frac{2}{2}= \\ & \frac{1 z 0}{240} \times \frac{z 1}{z 1}=\frac{1}{2} \end{aligned}$
12. $\begin{aligned} & \frac{4}{7} \times \frac{5}{8}= \\ & \frac{14}{7} \times \frac{5}{82}=\frac{5}{14} \end{aligned}$	13. $\begin{aligned} & \frac{2}{6} \times \frac{6}{2}= \\ & \frac{1 z}{16} \times \frac{61}{z 1}=\frac{1}{1}=1 \end{aligned}$	14. $\begin{aligned} & \frac{5}{10} \times \frac{2}{1}= \\ & \frac{15}{1210} \times \frac{z 1}{1}=\frac{1}{1}=1 \end{aligned}$
15. $\frac{5}{25} \times \frac{4}{1}=$ $\frac{15}{525} \times \frac{4}{1}=\frac{4}{5}$	$\begin{aligned} & \text { 16. } \frac{15}{17} \times \frac{6}{6}= \\ & \frac{15}{17} \times \frac{61}{61}=\frac{15}{17} \end{aligned}$	$\begin{aligned} & \text { 17. } \begin{array}{l} \frac{9}{9} \times \frac{1}{1}= \\ \frac{19}{19} \times \frac{1}{1}=\frac{1}{1}=1 \end{array},=1 \end{aligned}$

Fractions
Directions: Solve each problem. SHOW ALL WORK!! NO CALCULATORS!!

Aunt Marie needs help figuring out how much of each ingredient she will need to buy in order to make this cupcake recipe. Can you help her?

This recipe is for 12 people. If Aunt Marie wanted to cut the recipe in half, how much of each ingredient would it call for?

Adding \& Subtracting Decimals
Directions:Solve the following. DO NOT USE A CALCULATOR!!

Example 1 Add Decimals	
Find the value of $3.9+2.45$.	
STEP1 Rewrite the problem vertically	3.90
in order to align the decimal	$\begin{array}{r}\text { + } \\ +2.45 \\ \hline\end{array}$
points in each number. Add a	-
zero to 3.9 as a placeholder.	
STEP 2 Begin by adding the digits	- 3.90
in the hundredths place.	$\begin{array}{r}\text { + } 2.45 \\ \hline\end{array}$
	5
STEP 3 Add the digits in the	'1.90
tenths place. Since	$\begin{array}{r} \\ +2.45 \\ \hline\end{array}$
$9+4=13$, regroup	35
10 tenths as 1 one.	
STEP 4 Place the decimal point	3.90
in the answer. Add the	$\begin{array}{r}\text { + } 2.45 \\ \hline\end{array}$
digits in the ones place.	6.35
$3.9+2.45=6.35$	

Example 2 Subtract Decimals

Find the value of $8.6-4.55$.

1. $\begin{array}{cc} 4.59+1.02 & 1 \\ & 4.59 \\ +1.02 \\ \hline 5.61 \end{array}$	2. $\begin{array}{cc} 9.04-6.32 & 810 \\ & 9 . \theta 4 \\ & -6.32 \\ \hline 2.72 \end{array}$	3. $\begin{array}{cc} 5.8+0.26 \\ & 1 \\ & 5.80 \\ & +0.26 \\ \hline 6.06 \end{array}$
4. $\begin{array}{cc} 6.5-3.7 & 515 \\ & 6.5 \\ & -3.7 \\ & 2.8 \end{array}$	5. $\begin{array}{lr} 0.4+8.61 & 1 \\ & 0.40 \\ & +8.61 \\ \hline 9.01 \end{array}$	6. $\begin{array}{cr} 3.28-1.09 e & 118 \\ & 3.28 \\ & -1.09 \\ & 2.19 \end{array}$
7. $5.7+4.63$ $\begin{array}{r} 1 \\ 5.70 \\ +4.63 \\ \hline 10.33 \end{array}$	8. $\begin{array}{cc} 6.3-2.99 & 51210 \\ & 6.30 \\ & -2.99 \\ & 3.31 \end{array}$	9. $8.07+0.86$ $\begin{array}{r} 1 \\ 8.07 \\ +0.86 \\ \hline 8.93 \end{array}$
10. $\begin{array}{cc} 7.2-5.98 & 11 \\ & 61210 \\ & 7.20 \\ & -5.98 \\ & 1.22 \end{array}$	11. $7.02+7.3$ $\begin{array}{r} 7.02 \\ +7.30 \\ \hline 14.32 \end{array}$	12. $5.33-2.68$ $\begin{gathered} 41213 \\ 5.33 \\ -2.68 \\ \hline 2.65 \end{gathered}$

Multiplying \& Dividing Decimals

Directions: Solve the following problems. NO CALCULATOR! Show all work!

1. 26 63.9 2. 43 88.6 $\times \quad 7.0$ 447.30 8.01	
5. Diana paid $\$ 35$ for 10 kilograms of raisins. She put half of the total mass of the raisins into Pack A and the other half into Pack B. Diana sold Pack A for $\$ 4.50$ per kilogram and Pack B for $\$ 5.50$ per kilogram. Diana sold all of the raisins. How much money did she make? $\begin{aligned} & \text { Pack A: } 5 \cdot \$ 4.50=\$ 22.50 \\ & \text { Pack B: } 5 \cdot \$ 5.50=\$ 27.50 \\ & \$ 22.50+\$ 27.50=\$ 50.00 \\ & \$ 50.00-\$ 35.00=\$ 15.00 \end{aligned}$	6. A ball of fine thread cost $\$ 1.65$ per meter for the first 20 meters and $\$ 0.95$ for each additional meter. Jesse bought 32 meters of the thread. How much did she pay for the thread? $\begin{gathered} \$ 1.65 \cdot 20=\$ 33.00 \\ \$ 0.95 \cdot 12=\$ 11.40 \\ \$ 33.00+\$ 11.40=\$ 44.40 \end{gathered}$

Reading a Line Graph

Directions: The graph below shows the number of fish caught in a day. Use the graph to answer the questions.

Fishing Trip Results

Time

1) What time were the most fish caught? 11 AM
2) What time were the fewest fish caught? 10 AM
3) From 11 A.M. to 12 P.M. did the number of fish caught increase or decrease? \qquad
4) How many fish were caught at 9 A.M.? 8 fish
5) How many fish were caught at 10 A.M.? 4 fish
6) Were more fish caught at 10 A.M. or 11 A.M.? 11 AM
7) Were fewer fish caught at 9 A.M. or 10 A.M.? 10 AM
8) What is the difference in the number of fish caught at 9 A.M. and the number caught at 12 P.M.? 1 fish
9) What is the total number of fish caught? 39 fish
10) Were there at least 5 caught at 8 A.M.? Yes

Finding Area \& Perimeter of Rectangles
Directions: Find the perimeter \& area of the shapes below. All work must be shown!! Please follow the example problems for work we expect.

	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=4(5) \\ & \mathrm{A}=20 \mathrm{u}^{2} \\ & \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(4)+2(5) \\ & \mathrm{P}=8+10 \\ & \mathrm{P}=18 \mathrm{u} \end{aligned}$		$\begin{aligned} & \mathrm{A}=\mathrm{s}^{2} \\ & \mathrm{~A}=4^{2} \\ & \mathrm{~A}=16 \mathrm{u}^{2} \\ & \mathrm{P}=4 \mathrm{~s} \\ & \mathrm{P}=4(4) \\ & \mathrm{P}=16 \mathrm{u} \end{aligned}$	3	10	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=3(10) \\ & \mathrm{A}=30 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(3)+2(10) \\ & \mathrm{P}=6+20 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$
$4 \overleftarrow{ }^{2}$	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=2(4) \\ & \mathrm{A}=8 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(2)+2(4) \\ & \mathrm{P}=4+8 \\ & \mathrm{P}=12 \mathrm{u} \end{aligned}$	$3 \square^{2}$	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=3(2) \\ & \mathrm{A}=6 \mathrm{u}^{2} \\ & \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(3)+2(2) \\ & \mathrm{P}=6+4 \\ & \mathrm{P}=10 \mathrm{u} \end{aligned}$			$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=7(9) \\ & \mathrm{A}=63 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(7)+2(9) \\ & \mathrm{P}=14+18 \\ & \mathrm{P}=32 \mathrm{u} \end{aligned}$
	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=9(10) \\ & \mathrm{A}=90 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(9)+2(10) \\ & \mathrm{P}=18+20 \\ & \mathrm{P}=38 \mathrm{u} \end{aligned}$		$\begin{aligned} & A=b h \\ & A=8(10) \\ & A=80 u^{2} \\ & P=2 b+2 h \\ & P=2(8)+2(10) \\ & P=16+20 \\ & P=36 u \end{aligned}$			$\begin{aligned} & \mathrm{A}=\mathrm{S}^{2} \\ & \mathrm{~A}=5^{2} \\ & \mathrm{~A}=25 \mathrm{u}^{2} \\ & \mathrm{P}=4 \mathrm{~S} \\ & \mathrm{P}=4(5) \\ & \mathrm{P}=20 \mathrm{u} \end{aligned}$
	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=8(5) \\ & \mathrm{A}=40 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(8)+2(5) \\ & \mathrm{P}=16+10 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$		$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=4(9) \\ & \mathrm{A}=36 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(4)+2(9) \\ & \mathrm{P}=8+18 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$			$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=6(7) \\ & \mathrm{A}=42 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(6)+2(7) \\ & \mathrm{P}=12+14 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$

Finding Area of Triangles

Directions: Find the area of the triangles below. All work must be shown. Please follow the example problem for work we expect to see.

$\mathrm{A}=85 \mathrm{in}^{2}$	$\mathrm{A}=\frac{1}{2} \mathrm{bh}$ $A=\frac{1}{2}(15)(19)$ $\mathrm{A}=142.5 \mathrm{~mm}^{2}$	$\mathrm{A}=\frac{1}{2}(17)(13)$ $\mathrm{A}=110.5 \mathrm{~mm}^{2}$
$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(2)(9) \\ & A=9 \mathrm{~km}^{2} \end{aligned}$	$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(77)(24) \\ & A=924 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(19)(11) \\ & A=104.5 \mathrm{in}^{2} \end{aligned}$
$\mathrm{A}=3,116 \mathrm{ft}^{2}$	$\begin{aligned} & \mathrm{A}=\frac{1}{2} \mathrm{bh} \\ & \mathrm{~A}=\frac{1}{2}(12)(13) \\ & \mathrm{A}=78 \mathrm{~km}^{2} \end{aligned}$	$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(100)(81) \\ & A=4,050 \mathrm{in}^{2} \end{aligned}$

Area
Directions: Find the total length of the cross-country ski trail below by finding the length of the individual segments. In each rectangular loop, the area and one side length are given. After you've solved for each segment length, add them together and write the total in the bottom right corner.
Remember, $m=$ meters and $m^{2}=$ square meters.

Coordinate System
Directions: Write the point that is located at each ordered pair.

1) $(6,2) \xrightarrow{O}$
2) $(6,8) \xrightarrow{T}$
3) $(10,1) \xrightarrow{P}$
4) $(4,5) \xrightarrow{\text { E }}$
5) $(9,7) \quad \mathrm{S}$
6) $(2,3) \xrightarrow{Y}$

7) $(1,6) \quad \mathrm{J}$
8) $(5,7) \xrightarrow{Q}$
9) $(2,1) \quad \mathrm{U}$
10) $(7,4) \quad \mathrm{I}$

Directions: Write the ordered pair for each point.

11) $\mathrm{N}(10,3)$
12) $X(.4,4$.
13) $\mathrm{B}(.6,2$.)
14) L(. $8,5$.
15) $Z(.5,5$.
16) $\mathrm{P}(10,6)$
17) $\mathrm{D}(.2,8$.)
18) $M(.7,9$.
19) J(. $2,3$.
20) $\mathrm{H}(-3,6)$

Order of Operation
Directions: Simplify the following. Remember your PEMDAS rules!

PEMDAS Rules

Evaluate the problem in the following order:

1) P - Parentheses
2) E - Exponents (Powers and Square Roots)
3) MD - Multiplication and Division (Left to Right)
4) AS - Addition and Subtraction (Left to Right)

You can remember the order by saying :
Please Excuse My Dear Aunt Sally

$\begin{gathered} 13 \times 13-4+10 \\ 169-4+10 \\ 165+10 \\ 175 \end{gathered}$	1. $\begin{gathered} 18-11+19 \times 3 \\ 18-11+57 \\ 7+57 \\ 64 \end{gathered}$
2. $\begin{gathered} 24 \div 8 \times 11+3 \\ 3 \times 11+3 \\ 33+3 \\ 36 \end{gathered}$	3. $\begin{gathered} 2+11 \times 17-12 \\ 2+187-12 \\ 189-12 \\ 177 \end{gathered}$
4. $\begin{gathered} 9+4 \times 12+15 \\ 9+48+15 \\ 57+15 \\ 72 \end{gathered}$	$\begin{gathered} \hline \text { 5. } 16 \times 3-2+3 \\ 48-2+3 \\ 46+3 \\ 49 \end{gathered}$
6. $\begin{gathered} 16+9-10 \div 5 \\ 16+9-2 \\ 25-2 \\ 23 \end{gathered}$	7. $\begin{gathered} 16 \div 2+19-16 \\ 8+19-16 \\ 27-16 \\ 11 \end{gathered}$

Order of Operation

Directions: Simplify the following. Remember your PEMDAS rules!

$\begin{gather*} 8 \div 4 \times 19+10-1 \\ 2 \times 19+10-1 \\ 38+10-1 \\ 48-1 \tag{47} \end{gather*}$	$\text { 8. } 2 \times 17 \div 13 \times 3-1 .$
9. $\begin{gathered} 4-1+16 \times 11 \div 8 \\ 4-1+176+8 \\ 3+176+8 \\ 179+8 \\ 187 \end{gathered}$	$\begin{gathered} \text { 10. } 4-1+17 \times 18 \div 9 \\ 4-1+306 \div 9 \\ 4-1+34 \\ 3+34 \\ 37 \end{gathered}$
$\text { 11. } 18+14 \div 2 \times 18 \times 16$	$\text { 12. } 17 \times 14+14-6 \times 10 ~\left(\begin{array}{c} \text { a } \\ 238+14-6 \times 10 \\ 238+14-60 \\ 252-60 \\ 192 \end{array}\right.$
$\begin{gathered} 13.17 \times 10 \div 2-1 \times 12 \\ 170 \div 2-1 \times 12 \\ 85-1 \times 12 \\ 85-12 \\ 73 \end{gathered}$	$\begin{gathered} \text { 14. } 15-13+14 \times 9+19 \\ 15-13+126+19 \\ 2+126+19 \\ 128+19 \\ 147 \end{gathered}$
$\begin{gathered} 15.9 \times 5-1+8+15 \\ 45-1+8+15 \\ 44+8+15 \\ 52+15 \\ 67 \end{gathered}$	$\begin{gathered} 16.18 \times 11 \times 12 \div 3-2 \\ 198 \times 12 \div 3-2 \\ 2376 \div 3-2 \\ 792-2 \\ 790 \end{gathered}$

Squares \& Cubes

Directions: Evaluate the following. You may use a calculator.

$(10)^{3}=(10)(10)(10)=1,000$	$(12)^{2}=$	$2)=144$
1. $(2)^{2}=(2)(2)=4$	2. $(9)^{3}=(9)(9)(9)=729$	3. $(4)^{3}=(4)(4)(4)=64$
4. $(4)^{2}=(4)(4)=16$	5. $(7)^{2}=(7)(7)=49$	6. $(12)^{3}=(12)(12)(12)=1728$
7. $(5)^{3}=(5)(5)(5)=125$	8. $(6)^{2}=(6)(6)=36$	9. $(8)^{2}=(8)(8)=64$
10. $(3)^{3}=(3)(3)(3)=27$	11. $(1)^{3}=(1)(1)(1)=1$	12. $(8)^{3}=(8)(8)(8)=512$
$13 \cdot(5)^{2}=(5)(5)=25$	$\text { 14. }(2)^{3}=(2)(2)(2)=8$	15. $(11)^{2}=(11)(11)=121$
16. $(7)^{3}=(7)(7)(7)=343$	$\text { 17. }(6)^{3}=(6)(6)(6)=216$	$\text { 18. }(9)^{2}=(9)(9)=81$

Prime Factorization
Directions: Deteremine the prime factorization of the following numbers.

Example	1. Prime Factors $\underline{2} \times \underline{2} \times \underline{2} \times \underline{2} \times \underline{5}=80$	2. Prime Factors $\underline{2} \times \underline{2} \times \underline{3} \times \underline{3} \times \underline{3}=108$
3. Prime Factors $\underline{2} \times \underline{2} \times \underline{2} \times \underline{11}=88$	4. Prime Factors $\underline{2} \times \underline{3} \times \underline{3} \times \underline{3}=54$	5. Prime Factors $\underline{2} \times \underline{2} \times \underline{5} \times \underline{5}=100$
6. Prime Factors $\underline{2} \times \underline{2} \times \underline{2} \times \underline{3}=24$	7. Prime Factors $\underline{2} \times \underline{2} \times \underline{11}=44$	8. Prime Factors $\underline{2} \times \underline{5} \times \underline{5}=50$

Directions: Solve each problem. SHOW ALL WORK!

1. A recipe called for the ratio of sugar to flour to be $5: 1$. If you used 35 ounces of sugar, how many ounces of flour would you need to use?

5 sugar: 1 flour
x7 x7
35 sugar: 7 flour
7 ounces
3. The ratio of two numbers is 7:2. The difference between the two numbers is 15 . What is the greater number?

Difference: $7-2=5$
5 units $\rightarrow 15$
1 unit $\rightarrow 15 \div 5=3$
7 units $\rightarrow 7 \times 3=21$
The greatest number is 21 .
5. The ratio of Theo's age to Zack's age is 7:10. Twelve years ago, Zack was twice as old as Theo. What will be the ratio of Theo's age to Zack's age 9 years from now?

	Now $7: 10$	12 Years Ago $\mathbf{1 : 2}$	Twice?
Try 1	$14: 20$	$2: 8$	No
Try 2	$21: 30$	$9: 18$	Yes

$21+9=30$
$30+9=39$
$30: 39=10: 13$
The ratio of Theo's age to Zack's age will be 10: 13 .
2. A buffet offers ranch or Caesar dressing. The ratio of ranch dressing used to Caesar dressing used is $8: 3$. If the buffet uses 72 cases of ranch dressing, how many cases of Caesar do they use?

8 ranch : 3 Caesar
x9 x9
72 ranch : 27 Caesar
27 cases of Caesar
4. The areas of three lawns are in the ratio of 2:4:7. The medium-sized lawn has an area of 72 square yards. It costs $\$ 2$ per square yard to fertilize the lawns. How much more does it cost to fertilize the largest lawn than the smallest lawn?

```
\(2: 4\) : 7
    x18 x18
\(36: 72\) : 126
\(126 \cdot \$ 2=\$ 252\)
\(36 \cdot \$ 2=\$ 72\)
\(\$ 252-\$ 72=\$ 180\)
```

\$180 more
6. Mrs. Smith rears chickens and sheep on her farm. The ratio of the total number of legs of the chickens to the total number of legs of the sheep is $4: 7$. Find the least number of chickens and the least number of sheep on Mrs. Smith's farm.

Ratio	Least Number of Chickens	Least Number of Sheep
$4: 7$	2	Not possible
$8: 14$	4	Not possible
$12: 21$	6	Not possible
$16: 28$	8	7

The least number of chickens is 8 .
The least number of sheep is 7 .

Directions: Solve each problem. SHOW ALL WORK!!

1. The price of concert tickets was $\$ 5$. The singer got $\frac{2}{5}$ of the price. What percent does the singer get? $\frac{2}{5} \cdot \frac{20}{20}=\frac{40}{100}=40 \%$	2. What is 150% of 18 ? $\frac{3150}{12100} \cdot \frac{189}{1}=\frac{27}{1}=27$
3. What is 35% of 0.3 kilogram? $\frac{735}{20100} \cdot \frac{3}{10}=\frac{21}{200}=\frac{10.5}{100}=0.105 \text { kilograms }$	4. In a room of 80 children, $\frac{3}{4}$ of them wear glasses. 25% of those who wear glasses are boys. How many girls in the room wear glasses? $\frac{3}{14} \cdot \frac{8020}{1}=\frac{60}{1}=60$ wear glasses $\frac{125}{14100} \cdot \frac{6015}{1}=\frac{15}{1}=15 \text { boys }$ 45 girls wear glasses
5. A salesman sold 40% of the jackets he had. He had 150 jackets left. The salesman received $\$ 8,000$ from the sales. How much did 5 jackets cost? $60 \% \rightarrow 150$ jackets $10 \% \rightarrow 25$ jackets $40 \% \rightarrow 100$ jackets $\begin{aligned} & \$ 8,000 \div 100=\$ 80 \\ & \$ 80 \times 5=\$ 400 \end{aligned}$ 5 jackets costs $\$ 400$.	6. Explain the errors made by Jenny. a. 0.7 is 7% or 7 out of 100 She multiplied by 10 instead of 100 . b. $\frac{7}{10}=\frac{7}{100}=7 \%$ She forgot to multiply the numerator by 10. c. $\frac{2}{5} \times 100=40 \%$ She forgot to insert the percent sign for 100\%.

Conversions

Directions: Convert each measurement.

Units of capacity	
8 fluid ounces	1 cup
2 cups	1 pint
2 pints	1 quart
4 quarts	1 gallon

Katya's thermos holds 8 pints. How many cups does it hold?
$8 \times 2=16$
16 cups

This conversion table shows how to comert ounces, cups pints, quarts, and gallons.

Hannah's thermos holds 6 cups.
How many pints does it hold?

$$
6 \div 2=3 \quad 3 \text { pints }
$$

Convert 25 centimeters to millimeters. Convert $200 \Varangle$ to dollars.

$$
25 \times 10=250 \mathrm{~mm} \quad 200 \div 100=\$ 2
$$

1. 40 cm 400 mm	2. 15 cm $150 \mathrm{~mm}$	3. 30 mm \qquad 3 cm	4. 100 mm $\underline{ } 10 \mathrm{~cm}$
$\begin{array}{\|rr\|} \hline 5 \cdot & \$ 35 \\ & 3,500 \\ \hline \end{array}$	6. $\$ 600$ $60,000$	7. $450 ¢$ \$ 4.50	8. $150 \mathrm{\phi}$ \$ 1.50

